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Abstract. We investigate a possible way of constructing finite-dimensional indecomposable 
representations of the generalised Lie algebras. The spI (2 , l )  superalgebra has been studied 
as an example. 

1. Introduction 

Considering the importance of graded Lie algebras (GLA) in theoretical physics [l], 
especially semisimple GLA, it is of interest to examine such algebras and their representa- 
tions in the search for a super unified group. The spl(2, l )  superalgebra is one such 
algebra whose even part is the Weinberg-Salam algebra and, in this context, it has 
received attention in several attempts in obtaining a super unified group of particle 
interactions [2]. 

In Lie algebra theory, the three statements stating the non-existence of an Abelian 
ideal, non-degeneracy of the Killing form and reducibility of all finite-dimensional 
representations are completely equivalent. In GLA theory, however, each statement is 
stronger than the other [3], and several semisimple superalgebras with a desired even 
part possess indecomposable representations [4-61, a feature which is naturally 
undesirable. 

Infinite-dimensional indecomposable representations have been considered earlier 
by Gruber et a1 [4] for the osp(l ,2)  superalgebra. In this paper, we attempt a 
construction of finite-dimensional indecomposable representations for arbitrary r 
graded Lie algebras [7,8] (rcLA), which to the best of our knowledge has not been 
presented previously. 

In an earlier communication [ 5 ] ,  we had found a necessary and sufficient condition 
for finite-dimensional indecomposable representations using cohomology theory, 
namely, that the first cohomology group of the algebra g on a set of endomorphisms 
F of the module V onto its g invariant subspace, W, O #  W f  V, H L ( g ,  F ) = O ,  U 
defining the representation of g in F, F being defined as follows: 

F [ V ] =  w F [  W] = (0). (1.1) 
In this paper, we relate the aforesaid cohomology group H b ( g ,  F ) ,  to another that 

is easier to compute, i.e. H k ( g ,  W), and possesses a more universal significance; it 
could be the cohomology of an irreducible 4 module W, for instance. It turns out 
under a simple assumption that the vanishing of H i ( g ,  F) is exactly equivalent to the 
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vanishing of Hb(g, W) if the complementary subspace of V to W, W is invariant 
under the second action of g, i.e. if 

4(X)v1= axw1+ bxw2 w1 E w, U,, W 2 E  w (1.2) 

4J(Y)W*E w for all X, Y E  g (1.3) 

4(X)W = o  for all X E ~ ,  W E  W. ( 1.4) 

as long as W is not the trivial representation 

We have no reason to believe that the mode of construction of indecomposable 
representations that we present is exhaustive; nevertheless, for the indecomposable 
representations of the spl(2,l)  superalgebra [9], first enumerated by Marcu [6], the 
method we outline does cover all such representations, so much so that each violation 
of (1.3) yields a non-zero HL(g, F ) .  

The paper is arranged as follows. In § 2 after giving a brief summary of the 
cohomology and reducibility of the generalised Lie algebras, we outline our method 
of constructing indecomposable representations. In § 3 we consider the indecompos- 
able representations of the spl(2, 1) superalgebra as an example, and study the efficacy 
of our method in this connection. 

Our results are stated in the language of r G L A  [7], which enables them to be 
accessible to a wider class of algebraic structures. 

2. Construction of indecomposable representations 

Let g be a r graded Lie algebra ( r G L A )  over a commutative field IF. Let 4 : g + End V 
define a representation of g in V. We define 

C"(g, V)={f:g"+ V:f i s  [F linear a n d f ( X , , .  . . ,Xi ,Xi+l , .  . . , X n )  

=  xi^, lXi+,[)f(Xl,. . . , xi+, , x i , .  . . , x,,)x, Eg, i = 1, .  . . , n} (2.1) 

IX,(EI', being the degree of Xieg  on the Abelian group r. We further define 
6" : C"(g, U ) +  Cn+'(g, V) by 

6"f(X,, * .  * , X"+I) 
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It follows that 6" 0 a"+' = 0 V n  > 0 so that we may define 

Z;(g ,  V )  = ker 6" 

B:(g, V )  = Im 6"-' 

H%, V )  = Z $ ( g ,  V ) / B Z g ,  V )  

as the nth cocycles, nth coboundaries and  nth cohomology groups respectively [8]. 
In earlier investigations, it has been proved that the 4 module V of g is completely 

reducible into a g-invariant subspace W of V iff H L ( g ,  F )  = 0 [5,10] where F is the 
set of endomorphisms 

F [ V ] =  W F [  WI = (01 (2.6) 

4 X ) D  = ( 4 ( X ) ,  D )  V X E g , D E F  (2.7) 

and 

defines a representation of g in F. This was done by invoking a projection operator 
B of V onto W which is r homogeneous of degree zero. It is easily seen that 

@ ( X I  = ( 4 ( X ) ,  B )  E Z h ,  F ) .  (2.8) 

In what follows, we assume the form (2.8) for the first cocycle Zh(g, F ) .  We now 
show that HL(g,  F )  = 0 is exactly equivalent to H i ( g ,  W) = 0 under the assumption 
that (2.8) defines the form of an element of the first cocyle. 

From (2.8), we see that 6 is r homogeneous of degree zero, as B is. Hence, if 
H k ,  F )  = 0, 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.14) 
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We now see that if W is not the trivial representation (1.3) and if (1.2) holds, 
Hi(g, W) = 0 H:(g, F) = 0. 

Let 

fi(X) = E ( P ,  lXl)4(X)U, (2.15) 

( 2 . 1 5 ~ )  

QX E g, 1x1, P E r, up E Wp, yxl+p E u / i ~ l + ~ ,  W / ~ I + ~  E qXl+@, ax, bx E E, a commutative 
field of characteristic zero. Then it is easy to see that 

= E ( @ ,  lXl)[axw!x,+p + bxw/xl+pl 

W-,(X, Y) = 0 fi E Z k  V ) .  (2.16) 

However, if 

4(  Y) w/x ,+p  E Y X ! + I  v1+p VX, YEg,PEr (2.17) 

then it may be seen using (2.15) and (2.16) and the fact that W is g invariant that 

f ( X )  = E ( P ,  lXl)axyxl+p E Zi(g, W ) .  (2.18) 

If 

H i k ,  W )  = o  f ( X )  = E ( @ ,  lX04(X)wp (2.19) 

so that 

axwjx1tp = 4(X)w&. 
Now, if p and 0 are defined as in (2.8), then 

@(X)Up = [BdJ(X) - 4(X)Blup 

= B(axw,xl+p + bxw/x,+p) - 4(X)Bu,l 

= [axyxl+p + B(bxwi'x(+p) - 4(X)BUpl. 

Choosing 

D u ~  = B (  up - w & )  

we see, using (2.19a), that (2.20) reduces to 

e ( x ) u p  = [D4(X) - dJ(X)DIq3 

using the fact that for w ; ~ ~ + ~ B u ,  = Du, as 

4 (  Y)w/x,+p E q x l + l Y l + p  VX, YEg 

hence W/XI+lyI+p = 0 in this case. 
(2.21) is equivalent to the statement that 306  F 

6(X) = Cr(X)D VXEg 

i.e. 

HL(g, F) = 0. 

( 2 . 1 9 ~ )  

(2.20) 

(2.20a) 

(2.21) 

(2.22) 

Hence, if (2.17) is satisfied, Hi(g, W) = 0 is equivalent to HL(g, F) = 0. We see 
that the statement HL(g, F )  = O  is stronger than Hi(g, W) =0,  albeit the fact that 
Hi(g, W )  for irreducible representations W has a more universal significance. 

The above analysis breaks down if W is the representation 

dJ (Wu,  = 0 VXEg, u p €  W , , P E ~ .  
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If ax in ( 2 . 1 5 ~ )  is non-zero, we see from (2.18) that 

f ( X )  E Ztk, W ) .  

f ( X ) #  4 (X)W,  = o  
But in this case, even if (2.17) holds 

and so the canonical choice ( 2 . 2 0 ~ )  is not possible. 
We close this section with a recipe for constructing finite-dimensional indecompos- 

able representations of a semisimple r C L A  g. We start with all the finite-dimensional 
irreducible representations W of the r c L A  and compute H i ( g ,  W )  for all such rep- 
resentations (methods for doing so and requiring no further information than the 
commutation relations of the algebra and the structure of its irreducible representations 
are detailed in [ 5, 81). After this, indecomposable representations are constructed in 
three stages. 

( i )  We select those representations W ,  for which H L ( g ,  W , )  # 0. For these, one 
chooses an irreducible representation W, such that the parameters of W2 interlock 
with those of W ,  through the action of the generator of g such that W ,  is left invariant. 
Then one can see from the above analysis that for the representation space V = W ,  3 W, 
( 3  signifies that W, is left invariant), HL(g,  F )  # 0, F and (+ being defined in (2.6) 
and (2.7), respectively, with W ,  replacing W. Hence the representation space V 
constructed above is indecomposable. 

An example is the representation space V = [+I+ 3 [ 11, of the spI(2, 1) superalgebra 
which has been considered in [6]. Identifying W ,  with [;I+, one sees that H i ( g ,  W , )  # 0 
is perfectly consistent with the indecomposability of V as H L ( g ,  F )  # 0. 

(ii) We next consider the irreducible representations W, for which H i ( g ,  W , )  = 0. 
We consider all possible ways of interlocking the representations W ,  and W, with 
each other, so that W, is g invariant. Let the action of X E g on W ,  and W, be as follows: 

4 ( X ) W ,  E w, (2.23 a )  

~ ( X ) W ~ = U X W , + ~ ~ . W ;  W I E  w, ,  W , ,  W S E  w,. (2.236) 

(iii) Then, when the action of the other generators Y of g on W, (for which 

9 ( Y ) W * E  w2 (2.24) 

(i.e. the second action of g does not leave the representation space W, invariant) by 
a judicious choice of the parameters that exist (for spl(2, 1) these are CY, p, 6, etc), in 
order to obtain an indecomposable representation 

H i ( g ,  W,)  need not be zero), one has only to satisfy the condition 

v =  w,3 w,. 
If the trivial representation is identified with W ,  , one may even drop the restriction 

given by equation (2.24) in order to obtain an indecomposable representation. 
The three steps outlined above constitute, under the above analysis, all possible 

ways of obtaining HL(g,  F )  f 0 (the criterion for indecomposability arrived at in [5]) 
for the representation V = W 3 W',  namely 

(1) by choosing an irreducible representation W :  H i ( g ,  W )  # 0 and interlocking 
W with other representations W' such that W is g invariant. 

(2) If W is such that H i ( g ,  W )  = 0, by interlocking W with other representations 
W' such that equation (2.24) is satisfied, W being g invariant. 
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(3) By choosing W to be the trivial representation and interlocking other irreducible 

Hence these constitute ways of obtaining indecomposable representations. 
For the spl(2, 1 )  superalgebra, as will be seen in the next section, these yield all 

representations W' with W so that W is g invariant. 

finite-dimensional indecomposable representations. 

3. Indecomposable representations of the spl(2,l)  superalgebra 

The spl(2, 1 )  superalgebra is tabulated below for the convenience of the reader. There 
are four even generators ( Q + ,  Q-,  Q3, B )  and four odd generators ( V,, V-, W+ , W-): 

[Q3,Q*I=*Q* I Q + ,  Q-I=2Q3 ( 3 . 1 ~ )  

(3.lb) 

( 3 . 2 ~ )  

(3 .2b )  

(3.3a) 

CO*, VTI = v* [Q+,  W-I= We. (3.3b) 

(3.4a) 

[V*, W*l=*Q* [ V + ,  WTI=-Q~*B.  (3.46) 
The irreducible representations of the superalgebra are specified by two numbers 

6 and q. q is the maximal isospin contained by the irreducible representation (6, q ) ,  
and b is the eigenvalue of B for the multiplet 

[V,, V*I=[V*, V*I=[W*, W*I=[W*, wTl=o 

Q 2 d o = q ( q + l ) # J o  (3.5a) 

Bdo = bdo. (3.56) 

Q+do = V++o = W++o = 0. (3.6) 

Also, if do is the state with highest weight, 

The representation space of an irreducible representation of spl(2, 1 )  is generated 
by the vectors Q?&, (Q?V-)&,, (Q?W-)+, and (Q!'V-W_)+,, m a 0  [ 9 ] .  The 
corresponding isospin multiplets are denoted respectively by Ib, q ) ,  Ib +;, q -;), 16 -3, 
q -+) and /b, q - 1)  respectively. A typical irreducible representation ( b ,  q ) ,  b # *q ,  
contains all these multiplets except for q = f ,  b f *f which does not contain Ib, q - 1). 
A non-typical (atypical) irreducible representation is specified by b = *q ,  and denoted 
by [ S I + .  If b = +q, the representation contains only the Ib, q )  and Ib + f, q -3) isospin 
multiplets, if b = -4, the representation contains only the isospin multiplet (b,  + q )  and 

234 2 .  

The indecomposable representations of the spl( 2 , l )  superalgebra have been studied 

( 1 )  Those consisting of two or more typical representations, (b ,  q )  3 (6, q )  + . . . . 
(2) Those consisting of two or more typical representations of the form 

Ib-1 -i) 

in detail [6 ,  101. These are of two kinds. 

( 0 )  [41*%)[4 -+1*  
( b )  [ q  -$I* 3 [q1* 
( c )  [ S I *  3 [q1* .  
It has been seen in Cl01 that no other form of indecomposable representation can 

exist for the superalgebra, and also for each of the above H L ( g ,  F )  # 0, and that 
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H b ( g ,  W )  is zero for all irreducible finite-dimensional representations W except [;I*. 
We now apply the analysis of § 2. 

3.1. Indecomposable representations consisting of two or more typical representations 
( b ,  4 )  

The matrices of the superalgebra for this representation are given in [6, 101. The 
indecomposability of such a representation arises from the fact that the U( 1) generator 
of the Cartan subalgebra is non-diagonal, being in its Jordan canonical form. We note 
that H i ( g ,  W )  = 0 for all such irreducible representations W 

We begin with the isospin multiplet Ib, q, q3)2 with X = B. Then, using (2 .15a) ,  

4 ( B ) ( b ,  4, q3)2 = bJb ,  4, q3)i + Ib, 9, qd2 (3 .7)  

ax = b bx = 1 .  (3 .7a)  

A further application of 4 ( B )  on lb, q, q3)2 gives the same result. Hence, by the 
above analysis, the representation is indecomposable. It also turns out that H i ( g ,  F )  # 0 
for the state vector under consideration [lo]. 

The same analysis for 4 ( B )  may be repeated on each of the other states of (b ,  q ) ,  
e.g. Ib +f, q -4, q3),  with the same result. We have thus seen that HL(g,  F )  # 0. 

We now see that each violation of (2.17) gives rise to a non-vanishing H i ( g ,  F ) .  
For instance, considering 

4 ( V * ) l b - f ,  q - f ,  q3)2 

= E ( q  * q 3  +i)1/21b, 4, q3 * i ) 2  * l ( 4  7 43 - f ) l / 2 ( b ,  - 1, q 3  * t ) z  

+ E Y q  f 43 + W 2 1 b ,  4, q 3  * f), * 

We have already seen that the action 4 ( B )  on Ib, q, q3)2 and Ib, q - 1, q3)2 involves 
Ib, q, q3)l and Ib, q - 1,  q3)1 ,  so that (2.17) is violated. This violation also holds if we 
consider 

and 4( W * l b ,  q - l ,  q3)2* 
In each of these cases 3 D  E F :  

and 

Also H b ( g ,  F )  # 0 [lo]. 

for the action of a certain generator X on a representation space vector U, a D  E F :  
We have thus seen for the above representation that whenever (2.17) is violated 

e(x)u = ~ ( x ) D u .  
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3.2. Indecomposable representations corisisting of two atypical constituents 

These representations were introduced in [6] and really consist of three types [lo]. 
The matrices of these representations have been detailed in [6, lo]. 

( a )  [ q I + ~ [ q - f I * .  
We first consider the representation [q]+B[q -f]+, the analysis for [q]-B[q -41- 

following on the same lines. We identify W with [ q ] +  and note that H i ( g ,  W) = 0 
V q > $  [lo]. In this case 

4( V*)lq -4, 9 -f, q 3 )  

= E ( 9  * q3 + $1 li21q, q, q3 * 4) * 5 ( q  r q3 - t)1’21q, 9 - 1, q3 * 9. 

dJ( V J q ,  q - 1, q 3  + f) = 7 ( q  f q 3  + Y 2 1 q  + f, q - f, q 3  f 1) 

However, 

so that V, , acting on 14, q - 1 ,  q3 * $) gives a vector belonging to the invariant subspace 
[q]+ if 7 # 0, violating (2.17). If T = 0, as when q = f, condition (2.17) is satisfied, but 
H i ( g ,  W) # 0 as W = [‘,I+, hence H i ( g ,  F )  # 0, for if H i ( g ,  F )  were zero in this case, 
H i ( g ,  W) would also be zero, by (2.14). 

For no other generator acting on any other isospin multiplet of V is (2.17) violated. 
Hence we see that it is only for the multiplets 1q -;, q -f, q3) and )q, q - 1, q3) and 
X = V, that 

e( V J q ,  4 - 1, q3)  f VdDlq, - 1, q3) 

e ( v * ) l q - f ,  4 4 ,  q 3 ) # a ( V * ) D I q - f ,  q - t ,  q3) 

resulting in a non-vanishing HL(g,  F )  [lo]. 

)q  -5, q -$, q3) by 1-4 +f, q -f, q3), respectively, (2.17) is violated and 
For the representation [q]-+[q-$]-, if V, is replaced by W,, T by w and 

e ( W * ) l q + f , q - f , q , ) # ~ ( W * ) D I - q + f , q - ; , q , )  

unless o = 0 [ 101. 
If w = 0, when (2.17) is satisfied, W = [;I-, for which H b ( g ,  W) = 0. 

We first consider the representation [ q - f ]+  3 [ q]+ and identify W with [ q -;I+. 
For the invariant subspace [ q  -+ I+ ,  H ; ( g ,  W) = 0 Vq > 1. Considering this representa- 

( b )  [9-+1*3[91*. 

tion, we see that 

4(  W * ) / q + f ,  4 -4, q 3 )  

= r(q* q3+$)1’21q, q,q3*f)f 6 ( q  q 3  -f) l /21q, 9 - 1 , 4 3 4 .  

However, for p ZO, I$( W,)(q, q, q 3 ) = * P ( q + q 3 ) 1 ’ 2 1 q - f ,  9-4, q3*i ) ,  and hence 
is not satisfied. It has been shown in [ 101 that 3 D  E F 

4(W*)Iq++, 4 -f, q3) = d W * ) D / q + f ,  9 -f, q3) 

and 

(3 .8)  

2.17) 

3 . 9 ~ )  

4( W*)lq, 4, q3) = 4 W * P l q ,  q, q 3 )  (3 .9b)  

unless p = 6 = O .  When q =$, 6 = O  and ( 3 . 8 )  satisfies (2.17) as bx = O .  However, the 
invariant subspace W is zero, in which case our analysis breaks down completely, as 
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mentioned earlier, for there is no reason to suppose that p = 0. When q = 1, one further 
has H i ( g ,  W,) # 0 for W, = [;I+, so the representation [;I+ 33 [ 1]+ is indecomposable 
unless p = 6 = 0. 

For the representation [ q  - $1- 3 [ q]-, W, is to be replaced by V,  , 6 by 5 and /3 
by a and the above remarks may be repeated. 

( c )  [411*3)Es*l2*. 
Wefirstconsider[q]l+%,[q],+. Identifying[q],+ with W,wenotethat H i ( g ,  W) = O  

V q > i .  In this case we see that 

4 ( v * ) l q y  9, q3)2=*6(qFq3)’”lq+t, q + i ?  q3)1* T(qrq3)”21q+t, q - f ,  q3+it)Z.(3.10a) 
However, for T # 0 

#‘(W+)lq+t, q-4, q3+f)2 

= e ( q  * q3+  1)%, 9, q3* 1)) + d q * q 3 +  1P2Iq,  4, q3* (3.106) 

in which case, for non-zero 8, (2.17) is violated. It has been shown in [ 101 that ZlD E F :  

e( v , h  9, q3)2 = d v*)DIq, 4, q 3 h  (3.11a) 

e ( w , ) / q + f ,  q - f ,  q 3 ) = u ( w * ) % + $ ,  4 - t , q 3 ) ,  (3.116) 

When q = 0, T = 6 = 0, so the representation [ q l l +  3 [q12+ is automatically reducible. 
For the representation [ q], 3 [ qI2-, the above analysis may be repeated with the 

replacement of V, by W, , 1q + 4, q - t, q3)  by 1-4 - t, q - t, q3), T by 5 and 0 by p, and 
the above analysis goes through without any changes. 

It would be interesting to examine the above method for other irreducible rep- 
resentations of semisimple graded Lie algebras. 

unless T = 6 = 0. 
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